If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5n^2-45n=0
a = 5; b = -45; c = 0;
Δ = b2-4ac
Δ = -452-4·5·0
Δ = 2025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2025}=45$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-45)-45}{2*5}=\frac{0}{10} =0 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-45)+45}{2*5}=\frac{90}{10} =9 $
| x-((2/3)x)+16=25 | | 68-12x=-220 | | 2/3x+7+1/6x=12 | | 10y-1=5y+21 | | -18=5(y-6)-2y | | 3x+63+42-(180)=0 | | -9=8(v+7)+5v | | 2x-2(-x+5)=x+(-4) | | (8/27)^x=2/3 | | 3b^2-3b=18 | | -1=x+2+3 | | 4x-2(-1)=11 | | 3x+63+42=180 | | 2x-2(-x+5)=x+4 | | 5(n-7)=2(n=14) | | 16^2+32x=0 | | 36=(11x-19) | | (6+z)(2z+9)=0 | | -86=4x-22 | | 4(-3)-2y=11 | | 5(n-7)=(n=14) | | |3q-2|=7 | | -51+-w=-12 | | 90=(12x-6) | | -0.5n+0.25=0 | | -5t+-14=61 | | X+113x=20+7x | | 5r-10=10 | | 5=0.12^x | | 15.5=5.5+9.5(d+3.5) | | z/2+-16=-21 | | 3x-10=5x+26 |